
Theory Plug-in for Rodin 3.x

T.S. Hoang1, L. Voisin2, A. Salehi1, M. Butler1, T. Wilkinson1, and
N. Beauger2

1 ECS, University of Southamtpon, U.K.
2 Systerel, France

Abstract. The Theory plug-in enables modellers to extend the mathe-
matical modelling notation for Event-B, with accompanying support for
reasoning about the extended language. Previous version of the Theory
plug-in has been implemented based on Rodin 2.x. This presentation out-
line the main improvements to the Theory plug-in, to be compatible with
Rodin 3.x, in terms of both reliability and usability. We will also present
the changes that were needed in the Rodin core to accommodate the
Theory plug-in. Finally, we identify future enhancements and research
directions for the Theory plug-in.

1 Introduction

The Theory plug-in v3.0 has been implemented based on Rodin 2.x. The Theory
plug-in enables modellers to extend the mathematical modelling notation for
Event-B, with accompanying support for reasoning about the extended language.
As a result for this extension, different formulae within an Event-B model can
be built from different formula factories. As an example, when dealing with a
proof obligation, in particular, checking if an existing proof is reusable, we have
to deal with two formula factories: (1) the factory associated with the proof
obligation (coming from the model), and (2) the factory associated with the
existing proof. In the case where the model is altered, these formula factories
might be incompatible, rendering the existing proof unusable. In Rodin 3.0,
there are major changes (compared to Rodin 2.8) within the Rodin Core (http:
//wiki.event-b.org/index.php/Rodin_Platform_3.0_Release_Notes).

– Stronger AST Library: The API of the AST library has been strengthened
to mitigate risks of unsoundness when mixing several formula factories. Now,
every AST node carries the formula factory with which it was built, and the
AST operations that combine several formulas check that formula factories
are compatible.

– Stronger sequent prover: In order to improve the reliability of the proof
status when working with mathematical extensions, the reasoners can be
declared as context-dependent. The proofs that use a context dependent
reasoner will not be trusted merely based on their dependencies, but instead
they will be replayed in order to update their status. This applies in particu-
lar to Theory Plug-in reasoners, that depend on the mathematical language
and proof rules defined in theories, which change over time.

ar
X

iv
:1

70
1.

08
62

5v
1 

 [
cs

.S
E

] 
 4

 J
an

 2
01

7

http://wiki.event-b.org/index.php/Rodin_Platform_3.0_Release_Notes
http://wiki.event-b.org/index.php/Rodin_Platform_3.0_Release_Notes


The above changes directly effect the Theory plug-in, in particular to avoid
building formulae from sub-formulae with different formula factories.

2 Mathematical Extensions via the Theory Plug-in

The Theory plug-in [1] enables developers to define new (polymorphic) data
types and operators upon those data types. These additional modelling concepts
might be defined axiomatically or directly (including inductive definitions). We
have made use of the Theory plug-in capability to define domain-specific concepts
and provide proof rules for reasoning about them. We focus on the following
features of the Theory plug-in that are relevant for our report.

2.1 Modelling extensions

The following modelling extensions are offered by the Theory plug-in: Polymor-
phic Inductive Datatypes, Axiomatic Datatypes, Operators (using Direct Defini-
tion, Inductive Definition or Axiomatic definition)

Polymorphic Inductive Datatypes A datatype with type parameters (poly-
morphic) is defined using several constructors. Each constructor can have zero or
more destructors. As an example, the common List inductive datatype is defined
as in Fig. 1. A List is either an empty list (nil) or a concatenation of an element
(head) and a list (tail).

Fig. 1: List Datatype

Axiomatic Datatypes A datatype without any definition is axiomatically
defined. By convention, an axiomatic datatype satisfies the non-emptiness and
maximality properties, i.e., for an axiomatic type S,

S 6= ∅ (non-emptiness)

∀x·x ∈ S . (maximality)

An example of a axiomatic type for Real number (without any additional axioms)
is in Fig. 2.



Fig. 2: Real Datatype

Operators Operator can be defined directly, inductively or axiomatically. Fig. 3
shows the definitions of two operators list isEmpty (defined directly) and
list length (defined inductively). An operator defined without any definition

Fig. 3: Some operators for List Datatype

will be defined axiomatically. Operator notation can be either PREFIX (default)
or INFIX (for operator with two or more arguments). Further properties can be
declared for operators include associativity and commutativity. Fig. 4 shows the
declaration for three operators: sum, zero, and (unary) minus. In particular, sum
is declared to be an infix operator which is associative and commutative. The
axioms are the assumption about these operators that can be used to defined
proof-rules.

Reasoning extensions To support reasoning about the user-defined datatypes
and operators, the Theory plug-in offers 5 different proof tactics:

– Manual inferencing
– Manual rewriting (including expanding definitions)
– Automatic inferencing
– Automatic rewriting
– Automatic definition expanding

These proof tactics are configured using the proof rules as a part of the user-
defined theories. The manual tactics corresponding to application of a single
proof rule or expanding a single definition. For rewriting tactics, they often



Fig. 4: Some operators for Real Datatype

work at a particular location of the formula. Automatic applications of proof
rules mean to repeatedly apply one or more rules until no progress can be made.
There are two type of proof rules supported by the Theory plug-in, namely,
rewrite rules and inference rules.

Rewrite rules A simple (unconditional) rewrite rule contains information on
how to rewrite a formula (often to a simpler form). A rewrite rule can also be
conditional where the results of the rewriting depends on the circumstances.
In Fig. 5, Rules isEmpty nil rewrite and isEmpty cons rewrite are uncon-
ditional where Rule isEmpty rewrite is conditional.

Inference rules An inference rule contains a list of given conditions (possibly
empty) and the inferred clause. In Fig. 5, Rule isEmpty nil inference is an
example of inference rules. An inference rule can be applied backward or forward
(by default, it is applicable in both direction).

3 Changes to the Rodin Core

3.1 Compatibility of Formula Factories

The first main part of the work is to ensure that the Theory plug-in verifies the
construction of the AST formula to guarantee the compatibility of the formula
factories. Since the formula factories are basically constructed from the core
(standard) factory with mathematical extensions (datatypes, operators), com-
patibility between different formula factories is reduced to equalities between
datatypes and operators.

– (Inductive) Datatype: Two inductive datatypes are the same if they have
the same signature, i.e., name, type parameters, constructors, destructors.



Fig. 5: Example of proof rules for List Datatype

– Axiomatic Datatype: Two axiomatic datatypes are the same if they have
the same signature, i.e., name.

– Operators (axiomatically defined or with direct/inductive defini-
tions): Two operators are the same if they have the same signature, i.e.,
name, and arguments (including argument types). Note that this compar-
ison does NOT take into account the actual definitions/properties of the
operators.

With the above definition, the Theory plug-in correctly compares the formula
factory in constructing proofs and checking reusability of existing proofs.

3.2 Supporting Infix Predicate Operator

This particular additional functionality is mainly for improving the usability of
the Theory plug-in. We have implemented support for introducing Infix predicate
operator. For example, consider the operator smr (smaller than) for a datatype
Real numbers. With prefix operator, for expressing x smaller than y, we write

smr(x, y)

which is unnatural. With the support for infix operator, we can write the formula
as

x smr y

which improves the readability of the formal text. This support requires modi-
fication of both the Rodin platform core and the Theory plug-in core.

3.3 Supporting Type Specialisation

The Theory plug-in has to instantiate several generic datatypes and operators.
Such an instantiation means that both types and variables have to be replaced



at the same time. For instance, the classical list operator is defined as List(T ),
but can be used as List(1 .. 3).

The same issue also needs to be addressed by other plug-ins, such as generic
instantiation plug-ins that allow to make a generic development and later in-
stantiate it into another development.

Therefore, all the machinery for instantiating at the same time types and
variables has been developed withing the Rodin core in Rodin 3.x under the name
of specialisation (the instantiation name being already used for another purpose).
This specialisation mechanism can be applied to any type, type environment or
formula and guarantees type safety (if the input is well-typed, then the output
is guaranteed to also be well-typed).

4 Changes to the Theory Plug-in

4.1 Improvement on Pattern Matching

The pattern matching facility of the Theory plug-in has been upgraded to use
directly the support from the Event-B core for specialising (instantiating) formu-
lae. This ensures that the information for specialising formulae is type-consistent.
The following examples illustrate some consistent specialisations (which are un-
supported in the previous version).

Patterns Formulae
S −→ P(S)
S −→ S × T

Another important improvement on pattern matching is the implementation
for matching associative operators (which is only implemented for some special
cases before). The matching for associative formulae is done based on a simple
greedy algorithm. The following examples illustrate the result of pattern match-
ing for an associative operator, namely forward composition ;.

Patterns Formulae Result
f ; {x 7→ c} g;h; {y 7→ c} f ← g;h

x← y
c← c

e; f g;h; {y 7→ c} e← g
f ← h; {y 7→ c}

Note that in the second example, another possible result for pattern matching
would be [e← g;h, f ← {y 7→ c}]. Our algorithm only returns a single matching
result that it found first in the case where there more than one possible matching.

4.2 Supporting Unicode Typesetting for Real Number Operators

Another usability improvement that we have implemented is the support for
typesetting Real number operators in Unicode. Instead of ASCII text, we use
the following Unicode symbols for the common operators that we used in the
modelling.



4.3 Usability Improvement/Reimplementation Rule-based Prover

As mentioned before, the rule-based prover of the Theory plug-in offers 5 different
tactics:

1. Manual inferencing
2. Manual rewriting
3. Automatic inferencing
4. Automatic rewriting
5. Automatic definition expanding

Each tactic is a wrapper around one or more reasoners. Roughly speaking,
each reasoner manages an application of a single inference/rewrite rule. Table 1
shows the relationship between the tactics and the corresponding reasoner (for
the pervious, i.e., v3.0, and the current implementation, i.e., v4.0 ). The decision

Tactic v3.0 v4.0

Manual inferencing Single reasoner Single reasoner
Manual rewriting Single reasoner Single reasoner
Automatic inferencing Single reasoner Multiple reasoners
Automatic rewriting Single reasoner Multiple reasoners
Automatic definition expanding Single reasoner Multiple reasoners

Table 1: Tactics and Reasoners

to implement the automatic tactics combining multiple reasoners is for usability.
Instead bundling the effect of apply several rules into a single proof node, we
separately apply the rules one-by-one. The result is as follows

– The proofs are easy to understand.
– The proofs are less prone to changes (e.g., changes in the model).
– The proofs are easy to adapt, e.g., one can keep a part of the proofs produced

automatically (by pruning) and proceed further manually.



Reasoner Input In the previous version, the context of the proof obligation is
passed as an input to the reasoner. In this version, the context is retrieved from
the origin of the proof obligation. This ensure that the same context, e.g., the
formula factory, is used for the obligation and the proof. Further more, due to
the changes to the automatic reasoners described previously, the reasoner inputs
for these reasoners are adapted accordingly. Table 2 summarises the differences
between v3.0 and v4.0 of the tool.

Reasoner v3.0 v4.0

Manual Inferencing

– PO Context
– Rule Meta-data
– Application hypothe-

sis (if forward infer-
ence) or null (if back-
ward inference)

– Rule Meta-data
– Application hypothe-

sis (if forward infer-
ence) or null (if back-
ward inference)

Manual Rewrite

– PO Context
– Rule Meta-data
– Application hypothe-

sis (if rewriting a hy-
pothesis) or null (if
rewriting the goal)

– Rewrite position

– Rule Meta-data
– Application hypothe-

sis (if rewriting a hy-
pothesis) or null (if
rewriting the goal)

– Rewrite position

Automatic Inferencing

– PO Context – Rule Meta-data
– Forward or backward

Automatic Rewriting

– PO Context – Rule Meta-data

Table 2: Reasoner Input

Well-definedness When instantiating a proof rule, each instantiation expres-
sion required to be well-defined, to ensure that the resulting sequents are well-
defined. In v3.0, the well-definedness sub-goals are generated one for each instan-
tiation expression and are mixed with the other sub-goals, and in some cases are
not generated at all. We have consolidate the generation of the WD sub-goals (in
v4.0 ) by combing all these sub-goals into a single sub-goal (using conjunction)



and add this new WD sub-goal as (always) the first sub-goal when applying a
proof rule. As a result, the proof are much less prone to changes.

5 Future Work

In this paper, we have highlighted the major changes to the Theory plug-in and
the Rodin Core, focusing on bringing the Theory plug-in to the latest version
of the Rodin platform. In particular, the update requires some update to the
core of the Rodin Platform itself, hence will be publicly available after the next
release (v3.3 ) of the Rodin Platform. At the same time, we also improved the
usability of Theory plug-in, especially focusing on features that required changes
from the Rodin plug-in core.

In the next release, we will focus our attention to the usability of the plug-in,
by gathering feedbacks from its users. Some of the ideas for improvement are:

– Matching facility for associative and commutative operators (currently ig-
noring commutativity).

– Support for user-defined tactics
– Support for predicate variables in theories
– Theory instantiation (different abstraction-level of theories).

Acknowledgements

Laurent Voisin and Nicolas Beauger have been partially funded by the French
Research Agency under grant ANR-13-INSE-0001 (IMPEX project). Thai Son
Hoang, Michael Butler and Toby Wilkinson are supported by the ASUR Pro-
gramme project 1014 C6 PH1 104.

Disclaimer. This document is an overview of MOD sponsored research and is
released to inform projects that include safety- critical or safety-related soft-
ware. The information contained in this document should not be interpreted as
representing the views of the MOD, nor should it be assumed that it reflects
any current or future MOD policy. The information cannot supersede any statu-
tory or contractual requirements or liabilities and is offered without prejudice or
commitment.

References

1. Michael J. Butler and Issam Maamria. Practical theory extension in Event-B. In
Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of Programming
and Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th
Birthday, volume 8051 of Lecture Notes in Computer Science, pages 67–81. Springer,
2013.


	Theory Plug-in for Rodin 3.x

