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The software B method has so far been mainly used in the industrial world
to develop safety critical software with very basic memory management limited
to arrays of fixed size defined at compilation time.

We present here an alternative approach for modelling software based on
a more classic memory management with dynamically allocated complex data
structures accessed through pointers.

1 Context

Critical supervision systems are exposed to an increasing number of security
threats, which have deep consequences in domains such as energy, transport,
and defense. It is crucial to build components for the industry 4.0 and Industrial
Internet of Things that can better resist such threats.

OPC-UA is a standard [6] for data exchange in industrial communications. It
provides safe and secure means to connect supervision systems (SCADA) with
programmable logic controller (PLC), actuators, and sensors.

INGOPCS is a research project that aims at developing an open source OPC-
UA toolkit, named S2OPC1. This toolkit can be used for both server and client
software. It has been designed to comply with both the EAL4 security level
(Common Criteria [4]) and the SIL2 safety level (ISO/IEC 61508 [5]).

The toolkit is developed in C99. In order to ensure high assurance in the
development, formal methods have been applied: B modelling of OPC-UA ser-
vices, which is translated to C code; formal analysis of low-level manual C code
using Frama-C and TrustInSoft Analyzer.

Systerel has strong experience in software B modelling for embedded railway
applications. The toolkit however, does not address the same constraints:
– railway applications are cyclic (their entry point is a B operation called at

each software cycle, that reads input messages, computes internal data and
writes output messages), whereas the toolkit is triggered by events, either
from the network or the application level,

– railway applications use static memory management, whereas the toolkit re-
quires dynamic management, due to the wide diversity of exchanged objects.
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This paper explains how Systerel adapted its methods and design patterns
to build a B model of the OPC-UA services.

2 Modelling Dynamic Data

Historically, the software B method [1] has been used in an operational context
for the development of safety critical railway software [3, 2]. To meet these needs,
the B language has evolved, B translators into classic programming languages,
such as the C language, have been developed and methodological principles for
software B development have been defined. This package B language / translator
/ software B methodology has reached a good level of maturity for the develop-
ment of this type of software and has changed little since the early 2000s.

Although this approach is satisfactory, it is limited to the development of
cyclic software where data is entirely managed within the model. All variables
are statically allocated and contain simple data structures.

These features are not compatible with the development of software imple-
menting the OPC-UA protocol that heavily uses record-based data structures,
pointers to these data and dynamic allocation. We could try to get around these
memory management issues by interfacing the C data structures with B arrays.
However this approach is not satisfactory because it would imply a lot of data
copying in between the C program and the B model.

We will see how to solve all these problems without changing either the B
language or the B to C translators, thus bringing methodological solutions.

Classic B data structures. Implementable data structures supported by the
software B language and the C translators are 1 or 2-dimensional scalar ar-
rays and scalar types, where scalar types are the int type, the Boolean type,
enumerated types and carrier sets. Attempts to introduce record types into the
B-Language have raised major issues that made them impractical. For instance,
modifying several fields of the same record in a row leads to very large and hard
proof obligations. Therefore, with the classic B methodology, single records are
usually replaced by several scalars and arrays of records are replaced by several
arrays, one for each field of the record.

Carrier sets. One of the great advances of the current software B methodology
has been to successfully use carrier sets to provide strong typing at the B level,
while at the C level everything is integer. If we were to use integer subtypes
instead of carrier sets, we could misuse a variable for another one belonging to a
different subset, even at proof level, since all variables would be regular integers.
For example, in a rail system, trains, signals or points may be modeled by carrier
sets. Thanks to the strong typing, one is sure not to confuse a signal and a point
in the B formulas.

Pointer management. To handle pointers, the key idea is to consider that a
carrier set may represent a pointer type. For instance, to represent a pointer to
a record of two Cartesian coordinates x and y, we define in a basic machine a
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pointer type t pos i denoting all possible pointer values, a subset t pos denoting
pointers valid at some point in time and constant c pos undef denoting the
NULL pointer value. The fields of the pointed record are modelled by partial
functions. In addition, we define operations for memory management (allocation
and de-allocation) and access to field values. The basic machine is implemented
straightforwardly in C with the usual semantics.

sets
t pos i

abstract constants
t pos,
c pos undef

properties
t pos ⊆ t pos i ∧
c pos undef ∈ t pos i ∧
c pos undef 6∈ t pos

variables
f pos x,
f pos y

invariant
f pos x ∈ t pos 7→ Z ∧
f pos y ∈ t pos 7→ Z ∧
dom(f pos x) = dom(f pos y)

initialisation
f pos x, f pos y := ∅,∅

operations
p← pos alloc =̂
choice p := c pos undef or
any np, nx, ny
where np ∈ t pos− dom(f pos x) ∧ nx ∈ Z ∧ ny ∈ Z
then f pos x(np) := nx ‖ f pos y(np) := ny ‖ p := np end

end
pos free(p) =̂
pre p ∈ dom(f pos x)
then f pos x := {p}C− f pos x ‖ f pos y := {p}C− f pos y end

x← get pos x(p) =̂ pre p ∈ dom(f pos x) then x := f pos x(p) end
set pos x(p, x) =̂ pre p ∈ dom(f pos x) then f pos x(p) := x end

As pointers are viewed as scalars at the B level, nothing prevents us from
defining more complex structures where a field value is itself a pointer to another
record. We even can use arrays of pointers.

3 Use Case: OPC-UA Message manipulation

The decoding of incoming OPC-UA messages is an interesting application of
this approach. Messages arrive on a network socket as a stream of bytes. These
bytes are stored in a byte buffer (whose size is dynamic and unknown at compile
time) by low-level C code. They are then interpreted by the B model to create
a structured message, that is a record containing itself other records and arrays.
Again, this message structure is dynamic and depends on the contents of the
buffer, so it cannot be pre-allocated.
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A pointer to the byte buffer is passed as input to a B model entry point. This
buffer is already allocated and passed as a valid pointer. The buffer state variable
is initialized as not read yet. The buffer can then be read in a predefined order
that is enforced by buffer states used as preconditions for decoding operations
(message type, message header and message). These decoding operations allocate
message structures. In case of failure the buffer becomes unreadable (undefined
state). When reading is finished, the buffer is invalidated by setting its state to
undefined to prevent misuse.

The input message is allocated by the decoding operation. It is thereon used
as a valid message pointer. Then, messsage fields can be accessed as stated in
Sect. 2. Once the message content has been consumed, it is deallocated and the
pointer is set as invalid.

This example shows how the B model encapsulates the low-level byte buffer
and message structures. It controls the structure manipulation and the possible
field accesses. The memory management is also driven by the B model, even
though the object lifecycle is partial in it (e.g., an output pointer remains valid
out of the model but is considered invalid in it). Basic machines are only used
for low-level and basic operations (actual decoding, structure accesses).

4 Conclusion

The new approach that we have described allows us to incorporate explicitly
dynamic memory management in our B model, including allocation, dealloca-
tion and the validity of pointers. Since these properties are represented in the
model, they can be used in B invariants and operations to provide guarantees
when manipulating data referenced by pointers. As a consequence, operations
can define pre-conditions to manipulate only valid pointers and have read/write
access to the underlying data structures. Moreover the input and output data
flow can also be treated in the model even if part of the memory management
is done upstream or downstream of the model.

Another important aspect is that the data structures and their associated
low-level services (implemented directly in C) can be encapsulated in the B
model to add high-level properties on the services which are guaranteed by a
formal proof.

Thanks to the methodological advances presented, we successfully developed
a B model integrated in a piece of C software manipulating dynamically allocated
data and pointers, notably on structures.

There are still a few issues that we did not address yet. Firstly, all our data
structures contain a fixed number of elements whose size is also statically fixed.
One could extend the approach to dynamically sized fields and variant records
(e.g., C unions). Secondly, for recursive data structures (e.g., linked lists, trees)
one may also want to express some (inductive) property on the data structure
as a whole, while our approach is currently limited to each record (e.g., cell)
independently of the others.
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