
207

Middleware for a Distributed and Hot-redundant
Software in Ada 2012

Vincent Monfort
Systerel Paris, 3 Rue Danton, 92240 Malakoff; email: vincent.monfort@systerel.fr

Abstract

In railway control systems, distributed, available and
reliable software is a recurrent need. As a consequence
a middleware is a convenient solution to handle these
aspects and provide guarantees to the application soft-
ware. In this context, we developed a new Ada 2012 mid-
dleware for execution of distributed and hot-redundant
software which must conform with EN50128 standard.
This article presents the particular needs of such a mid-
dleware, the technical challenges and solutions, and a
feedback on the Ada 2012 language and tools.

Keywords: Ada 2012, SMP, middleware, distributed soft-
ware, hot-redundant software, railway control system,
critical software, EN50128.

1 Introduction
For the development of its new generation of underground
railway Integrated Control Center, Alstom Transportation
has decided to develop a new Ada 2012 middleware after
it used an Ada 83/95 one since 20 years. The reasons to
develop a new middleware from scratch were the need of
multi-platform and symmetric multiprocessing support on the
one hand and the advantages of using the latest features of
the Ada 2012 language and development tools to simplify
middleware architecture on the other hand. The middleware
main characteristics are a generic and high level interface
to host a supervision software and to hide the mechanisms
of communication, distribution (not using Annex E [1]) and
hot-redundancy services provided to the application software.
Moreover it must guarantee performance and high availability
to the application software which in addition must conform
to the EN50128 standard.

2 Context
A simplified view of an underground railway system can be
described as follows, on the one side there are the wayside
equipment (signaling, switches, presence sensors, etc.) and
rolling stock equipment, on the other side there are the control
system receiving statuses from the equipment and sending
commands to the equipment. In this example (see figure 1),
the control system is composed of distributed and redundant
machines:

• The server is in charge to normalize status and command
data, this server is duplicated on 2 redundant machines
SRV1 and SRV2,

• Several control station machines (SC1, SC2 and SC3)
are connected to the server (distribution).

Figure 1: Example of a railway control system architecture.

In such a system, the goal of a hot-redundancy mechanism is
to guarantee availability of the server services by switching
from SRV1 to SRV2 (or vice versa) in a short time in case
of failure of SRV1 (resp. SRV2). Each of the control station
machines needs to be notified about the status changes from
the wayside and can send commands to the wayside. As a
consequence the middleware must reach these objectives to
comply with an underground railway system needs.

3 Middleware principles
The next sections describe the main principles of the middle-
ware which are based on the configuration of the application
architecture and the execution of the application composed of
application functions in different processes.

3.1 Application software architecture

In the context of the middleware, the application software
architecture is composed of processes which can be executed
on different machines (each process on one machine) and
redundant processes which can be executed on two machines
(each redundant process on two machines). Each process runs
one or several application functions containing the applica-
tion code of the software and which can communicate with

Ada User Jour na l Vo lume 37, Number 4, December 2016



208 Middleware for a Dis t r ibu ted and Hot- redundant Sof tware in Ada 2012

other determined functions. The description of this architec-
ture must be done statically for the application, through an
XML configuration file, in order for the middleware to hide
the mechanisms of communication between the processes,
distribution and hot-redundancy.

Figure 2: Example of an application architecture configuration.

Figure 2 describes an example of application architecture.
It describes the machines, the processes (as squares), the
application functions (as numbered circles) and configured
exchanges between these functions. More particularly:

• Processes P2 and P3 are hosted on machine C: P2 runs
functions 1, 3 and 4, P3 runs functions 6 and 55,

• Process P1 is redundant and then hosted on 2 machines
A and B: P1 runs functions 10 and 11.

The corresponding XML configuration sample for process P1
is the following:

<process name = "P1">
<hosts>

<host name = "MachineA"/>
<host name = "MachineB"/>

</hosts>
<functions>

<function id="10"/>
<function id="11"/>

</functions>
<processes_to_connect>

<process_to_connect name = "P2"/>
<process_to_connect name = "P3"/>

</processes_to_connect>
</process>

In addition the functions can be configured to be executed on
a particular CPU core with a relative priority:

<function id = "10" priority = "high" cpu = "1"/>

3.2 Execution of application functions
The execution of the application hosted by the middleware is
message oriented, which means execution is based on mes-
sage exchanges between functions. Since application archi-
tecture is configured, a function can send messages to (resp.
receive messages from) another function without the need to
take care of its process nor machine location. The exchanged

messages must be defined by the application as a derived type
of the abstract message type:

type Fid_T is range 0 .. 255; −− Function identifier type

type Message_T (From : Fid_T;
To : Fid_T) is abstract tagged private;

−− Application defined type for messages from function 10 to 11
type Msg_10_To_11_T is new Message_T(From => 10, To => 11)
with record ... end record;

A function execution is orchestrated by the reception of mes-
sages which triggers application code execution, it is then
possible to execute application treatment, store data in mid-
dleware specific concurrent data structure and send messages
to other functions. Each function defines the contents of the
procedure, with predefined signature, called on message re-
ception and can send messages using the predefined Send
procedure:

−− Signature of procedure to be defined by each function
procedure Process_Message (Message : in Message_T’Class);

−− Predefined procedure to send messages
procedure Send (Message : in out Message_T);

An example of a function implementation can then be the
following:

procedure Process_Message
(Message : in Message_T’Class) is

MyMsg : Msg_10_To_11_T; −− Declare a new message
begin

... −− Treatments of incoming message
MyMsg.Data := ...; −− Set the message contents to send
MyMsg.Send; −− Send the message

end;

The middleware is then in charge to deliver the message to
the correct function and guarantee the delivery to the target
function running in the configured process and machine.

Note: middleware guarantees are provided for a controlled
and nominal application execution. It means application code
does not lead to crash and can afford to treat the amount of
messages it sends (if it is not the case it can be detected using
a configuration option setting a limit of messages in queue).

3.3 Details of the hot-redundancy mechanism

The redundancy mechanism is mainly based on a Mas-
ter/Slave mode for a redundant process, which means a redun-
dant process instance is either active (Master mode) or passive
(Slave mode) on an application functional point of view. If
the Master redundant process instance has a failure, then the
Slave instance will switch to Master mode and continue the
treatment of messages where it was stopped. Figure 3 shows
an example in which the Master instance of process P1 failed
on machine A and the Slave instance switched to Master
mode on machine B. In order to meet the requirements of
hot-redundancy, the middleware provides the guarantee that
message processing by a function is atomic and no message
is processed twice or dropped in regular circumstances (nom-
inal application behavior). These properties can be enforced
thanks to a few mechanisms:

Volume 37, Number 4, December 2016 Ada User Jour na l



V. Monfor t 209

Figure 3: Example of redundant process switch from Slave to
Master mode.

• Messages sent to a target function in a redundant process
are transmitted to both redundant process instances,

• Messages treatment state is synchronized between the
two redundant instances of a function,

• Application code must use specific redundant data struc-
ture which data are synchronized and modified in an
atomic way regarding a message treatment.

As a consequence, on the application side, there are only a few
constraints to implement a function in a redundant process.
The application code must use only the provided redundant
data structures, which are similar to classical containers such
as vectors and maps, and must not store data locally or send a
message referencing local contents.

4 Feedback on the Ada 2012 language and
tools

This section presents feedback on the latest Ada language
version and associated development tools (GNAT Pro tools).
In the first place, the new middleware benefits from the use
of Ada 2012 features and the first remarkable benefit is a
code size reduction of about 80% compared to the precedent
middleware version.

4.1 Features use

Most of the new Ada 2012 features were used to develop
the middleware. The next sections describe how the new
features have been used and justify the reasons for which
some features were not used.

4.1.1 Multi-task and task-safe treatments

The middleware architecture makes an important use of tasks
since each process uses at least the following tasks:

• client connection task: in charge to send messages from
functions to the network,

• server connection task: in charge to receive messages
from the network to be transmitted to target functions,

• function task: each application function execution is
managed by a different task,

• state manager task: in charge of managing the redun-
dancy state of the process.

In order to manage the messages exchanged between these
tasks the Task-safe queues were used in combination with the
Holders in order to store in the queues the abstract tagged
ancestor message type. Indeed, the function tasks use the
client queue to add messages to be sent by the client task,
and the server task uses the function task queues to transmit
received message to target functions.

Moreover Synchronized barriers are used to synchronize these
tasks after initialization phase.

4.1.2 Multi-processor affinity

The Multi-processor affinity and Task priority feature are used
by the middleware to configure the core tasks (client, server,
etc.) and the function tasks to run on a particular CPU with
a relative priority. This is important since the applications
developed are intended to be used on servers with at least 8
cores.

4.1.3 Contract programming

The Preconditions and postconditions were widely used for
the middleware development first, and then to expose the
expectations and obligations of the API for the hosted appli-
cation. Contract programming was really relevant to ensure
quick and efficient development integration and validation.

4.1.4 Expressiveness

The use of Conditional expressions, Quantified expressions
and Expression functions, but also of In-Out function pa-
rameters and Iterators, really improved the expressiveness
and readability of the middleware code. These features con-
tributed a lot to the code size reduction.

4.1.5 Unused features

Few of the new Ada 2012 features were not used for the
middleware but we can notice the following ones.

Type invariants are not used since middleware types do not
have strong internal constraints and the Preconditions and
postconditions were widely used to express constraints be-
tween different parameters. This is certainly due to the mid-
dleware nature of the software.

Subtype predicate are also absent since only integer subtypes
were defined and used only the range definition as constraint.

Ravenscar for multiprocessor systems was not used since the
middleware does not use a Ravenscar profile.

In addition, as indicated in the introduction, the existing An-
nex E [1] was not used for distributed aspects since it was not
suitable to the redundant mechanisms and encapsulation in the
middleware. There was also a guarantee that we could handle
the possible technical and performance issues independently
to reach our goals.

Ada User Jour na l Vo lume 37, Number 4, December 2016



210 Middleware for a Dis t r ibu ted and Hot- redundant Sof tware in Ada 2012

4.2 Development tool use

GNAT Pro tools were used to develop in Ada 2012 and reach
our requirements in terms of portability, quality and perfor-
mance.

4.2.1 Operating System dependency

In order to be independent of the Operating System, the GNAT
Pro libraries were used.

First of all, the GNAT sockets, used as streams, are an impor-
tant feature for the middleware. Sockets are used for message
exchange between processes or process instances, these mes-
sages can be application messages but also internal messages
to initiate or maintain communication, synchronization of
redundant process instances and so on. Associated to the
stream mechanism, it permitted a lightweight and readable
implementation of the message exchange on the network.

Then other Operating System dependencies were avoided
through the GNAT OS_Lib interfaces.

4.2.2 Code quality

The GNATCheck tool was used to enforce the compliance of
the code with the coding rules defined for the development
process with EN50128 standard. Most of the coding rules
were automatically verified using it.

4.2.3 Other utilities

Moreover several standard libraries were used to implement
the middleware and participate also to keep the code clean
and reduce its size. The XMLAda library is used to parse
the application architecture configuration file, the Traceback
and Source_Info libraries allow to report precise diagnostic
traces and the MD5 tool is used to guarantee the integrity of
the middleware version.

4.3 Difficulties encountered

After all the advantages exposed above, we also want to
describe the difficulties and issues encountered during the
development.

4.3.1 Development tool bugs

Several bugs showed up while using the GNAT Pro 7.2 ver-
sion. They were related to the use of Ada 2012 features. Most
of the bugs were compiler ones leading to crash bug box in
various cases (expression function, type declaration with dis-
criminant and derived type, anonymous type use, access to
private record structure with discriminant and child unit), a
few were on compiled code (non-evaluation of protected bar-
rier, double execution of instruction) and on the GNATCheck
tool (expression functions).

However all these problems have been fixed since the GNAT
Pro 7.4 version.

4.3.2 Real time timers
The real time timers Ada.Real_Time.Timing_Events
implementation is not suitable for the middleware. Indeed
these timers are implemented using one task to check the
expiration of all timers and execute the associated callback.
Consequently, execution of one callback can postpone the
following timer expiration. This last point was not acceptable
since application code could have modified middleware be-
havior by delaying internal timers. Moreover the protected
procedure callback interface was not convenient since it was
forbidding to use the task-safe queues used for sending mes-
sages. Even if these timers could be suitable for embedded
environment, it was not the case for the native environment
and middleware needs.

As a consequence the timers were re-implemented for the mid-
dleware needs by providing non protected callback interfaces
for timer expiration executed by independent tasks.

4.3.3 Performance issues
Stream sockets

Due to the combination of serialization and streaming through
TCP sockets, we faced a performance issue for which the net-
work performance was heading to 2 MBytes/sec with full
CPU usage. Indeed for the serialized type, the smallest serial-
izable sub-elements are sent as independent TCP messages
which was not suitable to send our defined abstract message
type. Moreover since concrete message types are defined by
the application it is not suitable to let the application re-define
the serialization of the type.

This problem has been solved in several steps. First we used a
stream memory buffer implementation which is a stream type
which can be streamed itself into another stream. Then, since
it was implemented with a byte array, we had to redefine
its serialization to avoid it to be sent element by element
(default array serialization behavior except for the String type).
Finally we used this stream as an intermediate stream to send
a message type object to a TCP stream socket generating only
one TCP message. This solution improved performance by a
factor of 50 and brought back normal CPU usage.

Task-safe unbounded priority queues

Exchanges of messages in the middleware intensively use
Ada.Containers.Unbounded_Priority_Queues
but a performance issue was present in the implementation
when using it with many messages with the same priority
in the queue. Finally we participated to fix it in GNAT Pro
(NF-17-OB05-042).

5 Conclusion
This middleware development was the first important indus-
trial project using Ada 2012 for Systerel. It has convinced
us that it is a major evolution of the language. The new Ada
features allow for a quick development and finalization of
a middleware containing a sensitive hot-redundancy feature.
Finally, the first railway product application hosted by the
middleware is now in production and is robust and efficient.

References
[1] ISO/IEC 8652: 2012(E), Ada 2012 Reference Manual.

Volume 37, Number 4, December 2016 Ada User Jour na l


